Viscometry Constants for 1,4-Polybutadiene in Tetralin at $135^{\circ} \mathrm{C}$

For linear-chain polymers,

$$
\begin{equation*}
[\eta]=K *\left(M_{\nu}\right)^{a} \tag{1}
\end{equation*}
$$

where [η] is intrinsic viscosity, K and a are Mark-Houwink parameters for a given polymer in a specified solvent at a specified temperature, and M_{v} is the viscosity average molecular weight. Thus, if [η], K, and a are known, M_{v} can be calculated. Or if $[\eta]$ is measured for a series of standards with known molecular weights M, then a and $\log K$ are obtained from a plot of $\log [\eta]$ vs. $\log M$.

During the course of a research program on blends of crystallizable polybutadiene (PBD) isomers, ${ }^{1,2}$ we needed to determine the molecular weight of a trans-1,4-polybutadiene sample. Gel permeation chromatography (GPC) of the trans-1,4-PBD in $140^{\circ} \mathrm{C}$ tetralin was unsuccessful due to extensive polymer degradation during testing. Therefore, we obtained Mark-Houwink constants for a series of 1,4 PBD (mixed cis/trans) standards of known molecular weight and low polydispersities. The constants were determined using solutions of PBD in tetralin at $135^{\circ} \mathrm{C}$, and then we obtained the M_{v} of the trans-1,4-PBD sample.

The series of $1,4-\mathrm{PBD}$ standards had molecular weights of $5000,23,000,150,000$, and $240,000 \mathrm{~g} / \mathrm{mol}$ (American Polymer Standards Corporation, Mentor, OH). The standards were reported to have polydispersities of 1.11.3 and microstructures with approximately 42% cis-1,4, 50% trans 1,4 , and $8 \% 1,2$ repeat units.

The intrinsic viscosity [η] is the y-intercept on a plot of η_{sp} / c or $\ln \left(\eta_{r}\right) / c$ as a function of c (concentration), where $\eta_{r}=\eta / \eta_{0}$ is the relative viscosity and $\eta_{\mathrm{sp}}=\left(\eta-\eta_{0}\right) /$ $\eta_{0}=\eta_{r}-1$ is the specific viscosity; in these relationships, η is the sample viscosity and η_{0} is the viscosity of the solvent. ${ }^{3}$ It is usually reasonable to approximate the quantity η / η_{0} by t / t_{0}, where t is the time for a polymer solution to pass between two marks on an appropriate viscometer and t_{0} is the time for pure solvent to pass between the same marks. This approximation breaks down at low values of t, where a kinetic energy correction is required ${ }^{3,4}$ It is also possible to use a series of viscometers to obtain data at various flow (shear) rates and thereby extrapolate to zero shear rate conditions. We report data here which are uncorrected for the effects of kinetic energy and finite shear rate.

A Cannon-Fenske viscometer (size 150) was used for all of our viscometry tests. The viscometer was placed in

[^0]a stirred oil bath at $135 \pm 2^{\circ} \mathrm{C}$. Sample solutions were prepared and tested in 10 mL tetralin. Immediately prior to the test, solutions were mixed at $135^{\circ} \mathrm{C}$ for at least 30 min . Between runs, the viscometer was rinsed with 10 mL tetralin until t_{0} was reproducible at $19.7 \pm 0.2 \mathrm{~s}$. At least four concentrations were tested for each 1,4-PBD standard, as listed in Table I. The concentrations were selected to give approximately $1.2<t / t_{0}<2.0$.

The higher molecular weight 1,4 -PBD standards (150,000 and $240,000 \mathrm{~g} / \mathrm{mol}$) degraded with time in the hot tetralin. The flow times t became progressively shorter as the solutions remained at $135^{\circ} \mathrm{C}$ over the course of approximately 30 min , even when Irganox 1076 antioxidant (Ciba-Geigy Corporation, Hawthorne, NY) was present in the solution. In order to obtain reliable K and a values, the flow times of each solution were determined for various exposure times in the hot tetralin and then extrapolated back to zero exposure time. We note that trans-1,4-PBD also showed this time-dependent degradation, but syndiotactic $1,2-\mathrm{PBD}$ samples showed negligible degradation in $135^{\circ} \mathrm{C}$ tetralin over the course of approximately 30 min .

Figures 1 and 2 are plots of $\eta_{\text {sp }} / c$ and $\ln \left(\eta_{r}\right) / c$ as a function of concentration for all of the standards. Figure 3 is the best-fit regression plot of $\log [\eta]$ as a function of $\log M$. It yields K and a equal to $0.0161 \pm 0.0025 \mathrm{~mL} / \mathrm{g}$ and 0.74, respectively, for analysis based on the η_{sp} correlation, and K and a equal to $0.0145 \pm 0.0022 \mathrm{~mL} / \mathrm{g}$ and 0.75 for analysis based on the $\ln \left(\eta_{r}\right)$ correlation. The plotted line on this figure is the average of the two sets of points. In either case, correlation coefficients (R^{2}) are greater than 0.992 . Correlation coefficients for determination of [η] values in Figures 1 and 2 are not as good, but analysis based on η_{sp} gives better correlation coefficients than analysis based on $\ln \left(\eta_{r}\right)$. Our results are summarized in Table II along with literature values of K and a for PBD determined under various other experimental conditions.

Table I Sample Concentrations

$M(\mathrm{~g} / \mathrm{mol})$	Concentrations $(\mathrm{g} / \mathrm{mL})$
	$0.0021,0.0052,0.0073,0.0082,0.0127$, and
5000	0.0203
23,000	$0.0010,0.0022,0.0043,0.0082$, and 0.0124
150,000	$0.0010,0.0025,0.0039,0.0052$, and 0.0060
240,000	$0.0010,0.0020,0.0030$, and 0.0041

Figure 1 Plot of η_{sp} / c as a function of concentration for all of the standards.

Figure 2 Plot of $\left.\ln \left(\eta_{r}\right) / c\right)$ as a function of concentration for all of the standards.

Figure 3 Best-fit regression plot of $\log [\eta]$ as a function of $\log M$.

Table II K and a Values for 1,4-Polybutadiene

Composition	Conditions	$K(\mathrm{~mL} / \mathrm{g})$	a	Ref.
97% trans $1,4,3 \% 1,2$	Toluene, $30^{\circ} \mathrm{C}, 50-160 \mathrm{~kg} / \mathrm{mol}$	0.0294	0.753	5,6
55% trans, 35% cis $1,4,10 \% 1,2$	Toluene, $25^{\circ} \mathrm{C}$	0.0142	0.80	5,7
51% trans, 43% cis $1,4,6 \% 1,2$	Toluene, $30^{\circ} \mathrm{C}, 100-250 \mathrm{~kg} / \mathrm{mol}$	0.039	0.713	5,8
5.3% trans $1,4,94.3 \% 1,2$	Toluene, $25^{\circ} \mathrm{C}$	0.0901	0.81	5,9
50% trans, 42% cis $1,4,8 \% 1,2$	Tetralin, $135^{\circ} \mathrm{C}, 5-240 \mathrm{~kg} / \mathrm{mol}$			
	η_{r} correlation	0.0145	0.75	
	η_{sp} correlation	0.0161	0.74	

We acknowledge the Office of Naval Research and Goodyear Tire and Rubber Co. for funding this work.

References

1. M. M. Nir and R. E. Cohen, to appear.
2. M. M. Nir, Ph.D. thesis, Massachusetts Institute of Technology, 1991.
3. E. A. Collins, J. Bares, and F. W. Billmeyer, Jr., Experiments in Polymer Science, Wiley, New York, 1973.
4. M. R. Cannon, F. E. Manning, and J. D. Bell, Anal. Chem., 32 (3), 355 (1960).
5. J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed., Wiley, New York, 1975.
6. R. Endo, Nippon Gomu Kyokaishi, 34, 527 (1961).
7. H. E. Adams, K. Farhat, and B. L. Johnson, Ind. Eng. Chem. Prod. Res. Deu., 5, 126 (1966).
8. R. Endo, Nippon Gomu Kyokaishi, 35, 658 (1962).
9. J. N. Anderson, M. L. Barzan, and H. E. Adams, Rubber Chem. Technol., 45, 1281 (1972).

Moira Marx Nir Robert E. Cohen
Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received December 2, 1991
Accepted December 27, 1991

[^0]: Journal of Applied Polymer Science, Vol. 46, 1503-1505 (1992)
 © 1992 John Wiley \& Sons, Inc.
 CCC 0021-8995/92/081503-03

